Augmentation and implant treatment
Two-stage surgery in the severely resorbed edentulous mandible

By Dr Marko Nikolic, Croatia

Introduction
An adequate bone volume at the future implant site is a prerequisite for ideal implant placement and implant success. A residual bone with a vertical dimension less than 1.0 cm indicates a cut-off point and implies the need of additional augmentation procedures in connection with implant insertion, whereas higher values of the alveolar crest if a 3.0 cm or more are considered to be sufficient for treatment with standard-diameter implants without the urgent need of any horizontal bone augmentation.1,2 Distant donor sites like the anterior iliac crest and intraradial areas like the retromandibular and the interforaminal region of the chin are common sources for harvesting autogenous bone grafts. Depending from the donor site, patient and surgeon should be aware of the possible confrontation with various advantages but also disadvantages when harvesting the bone. Harvesting bone from the iliac crest requires patient hospitalisation, and surgery under general anaesthesia, whereas intraradial bone harvesting can be performed ambulatory and under local anaesthesia.1,3

The main problem with autogenous bone grafting is represented by the high risk of patient morbidity, causing pain, swelling, and healing problems at the donor site.1

The aim of this case presentation is to demonstrate a predictable, two-stage operating protocol for the horizontal augmentation of the severely resorbed, edentulous anterior mandible with an autogenous bone graft, harvested from the crestal alveolar ridge at implant site, in order to create a sufficient bone volume for the later implant therapy,without donor morbidity for the patient.

Patient data
The 47-year-old male patient visited our dental office in order to renew the front of the lower jaw which had been removed three months previously due to a chronic periodontitis in our dental practice. Nearly all remaining teeth in the upper and lower jaw showed significant signs of gingival and chronic periodontitis, insufficient root treatments and prosthetic suprastructures as well (Fig. 1). The medical history of the patient was without any significant pathological findings.

Diagnostic procedures
In cases of long-term edentulism, the dental surgeon is almost always confronted with a reduced bone volume, representing both a major challenge and a significant demand for the use of diagnostic imaging methods prior to augmentation and implant treatment. Conventional X-ray images contain only a two-dimensional information concerning the vertical height of the alveolar bone. Therefore, they represent an insufficient method for the appreciation of the horizontal bone dimensions.4

In comparison, three-dimensional (3D) diagnostic tools like cone beam computed tomography (CBCT) offer the advantage of the visualisation of the so-called ‘z-axis’, representing the bone volume in the horizontal, i.e. bucco-lingual dimension of the alveolar crest. A proper treatment planning and the use of 3D diagnosis are therefore crucial parameters for a predictable and sustainable final treatment outcome in implant therapy, especially in patients with severe resorption of the jawbone, like in our presented patient case.

The oral examination and the CBCT-scan (SCANORA, Soredex, Schutterwald, Germany) revealed a distinct bone resorption in the lower jaw, showing a more pronounced horizontal atrophy in the anterior part of the mandible (Figs. 2a & b). The CBCT scan revealed a horizontal crestal bone thickness of 1.0, 2.0, and 1.7 mm in regions 32, 33, and 34 respectively. A proper treatment planning and augmentation procedure

After patient-consultation, we opted for a two-stage surgery with an intraradial harvested autogenous bone-graft and a delayed implant treatment after a healing period of at least four months. As the vertical dimension of the implant region appeared to be sufficient enough for placement of implants with a standard length, we decided to cut off 5.0 mm of the thin and sharp-edged alveolar ridge by osteotomy, in order to create an autogenous lateral onlay bone-graft for horizontal augmentation in the anterior alveolar ridge. This protocol comprised in our view the advantage of the avoidance of donor morbidity, because the donor site was the receptor site as well. After creation and mobilisation of the mucoperiosteal flap, the very thin and sharp edge of the atrophied alveolar crest became visible (Fig. 4).

The osteotomy of the bone was performed with a saw (Bone splitting system, Helmut Zepf Medizintechnik GmbH, Seitingen-Oberflacht, Germany, Fig. 5).

Subsequently, the graft was detached from the anterior mandible with chisel (Bone splitting system, Helmut Zepf Medizintechnik GmbH, Seitingen-Oberflacht, Germany; Fig. 6) and a cortico-cancellous bone block was obtained (Fig. 7). The bone graft was fixed at the bacular side of the anterior mandible (reimplantation zone).

The horizontal bone volume amounted to between 1.0-3.0 mm in the implantation zone. The CBCT-scan revealed a horizontal crestal bone thickness of 1.0 mm in region 32, and 1.7 mm in region 44.

Treatment planning and augmentation procedure
After patient-consultation, we opted for a two-stage surgery with an intraradial harvested autogenous bone-graft and a delayed implant treatment after a healing period of at least four months. As the vertical dimension of the implant region appeared to be sufficient enough for placement of implants with a standard length, we decided to cut off 5.0 mm of the thin and sharp-edged alveolar ridge by osteotomy, in order to create an autogenous lateral onlay bone-graft for horizontal augmentation in the anterior alveolar ridge. This protocol comprised in our view the advantage of the avoidance of donor morbidity, because the donor site was the receptor site as well. After creation and mobilisation of the mucoperiosteal flap, the very thin and sharp edge of the atrophied alveolar crest became visible (Fig. 4).

The osteotomy of the bone was performed with a saw (Bone splitting system, Helmut Zepf Medizintechnik GmbH, Seitingen-Oberflacht, Germany, Fig. 5).

Subsequently, the graft was detached from the anterior mandible with chisel (Bone splitting system, Helmut Zepf Medizintechnik GmbH, Seitingen-Oberflacht, Germany; Fig. 6) and a cortico-cancellous bone block was obtained (Fig. 7). The bone graft was fixed at the bacular side of the anterior mandible (reimplantation zone).

Fig. 1: Pre-operative panoramic X-ray: poor periodontal and prosthetic conditions.

Fig. 2a & b: Pre-operative CBCT: aspect of the extremely horizontally resorbed alveolar ridges of the anterior part of the mandible.
The four implants with a diameter of 3.5mm and a length of 10mm (RECO Semados® RSX, RECO Implant Systems) were inserted epicrestally in regions 33, 31, 41 and 43 using the freehand method without a surgical guide (Fig. 13). Due to the lack of keratinised gingiva, we decided to elevate the flap from the thin alveolar crest, in order to use it as an onlay graft and implants. Obviously, the good osseointegration of both, autogenous bone graft and implants, was sufficient enough in our clinical case, we decided to perform the Edlan-Mejchar method with the Edlan-Mejchar plastic surgery to deepen the vestibulum. The staged approach comprised inter alia the possibility for an implant placement in an ideal position enough for enough in our case. Thus, resorbable screws seem to have a high susceptibility for fracture during fixation of onlay grafts. As the combination of autogenous grafts with guided bone regeneration (GBR) is apparently associated with superior outcomes, we decided to use a barrier membrane for guided bone regeneration (GBR). With the additional application of a PRGF membrane, we aimed to utilise non-resorbable titanium screws in favour to resorbable screws out of Poly-乳酸 acid, which was supported by the findings of a systematic review of the Cochran Collaboration.

Therapeutically, the described grafting procedure has not been previously reported in literature. Despite the lack of any experience reports, our method revealed nonetheless a successful rehabilitation with an implant-supported, screw-retained prosthetic rehabilitation, and is still in function without any biological or technical problems after a three-year follow up.

Special thanks to Dr Pantelis Petrakakis.

Editorial note: A list of references is available from the publisher.

The article was published in CADCAM Magazine International Magazine of Digital Dentistry 4/2016.

Dr Marina Nikolic
ArdentClinic
Zvonarica 1a
Koševac, Croatia
Tel.: +385 51 582888
info@ardentclin.hr
The Full Arch Promise

By Dr. Frank R. LaMar Jr., USA

When patients seek dental implant treatments, not only do they bring specific needs, they also bring hope. Health care marketing today has only increased these expectations, and has set up more doctors to fail to meet them. Not because they aren't capable, but because they haven't reset their patients' expectations at the beginning. Many dentists end up struggling to fulfill their own promises, and it can ultimately impact their reputations for years to come.

The Promise of Great Teeth, Right Away

One of the biggest challenges we face as dentists is our patients' expectations of immediacy. Throughout their lives, consumers have been delivered things fast. Fast food, overnight deliveries, two-day gift deliveries from across the globe. People have been trained to believe that fast is best. This has become true in the dental implant / full arch delivery space as well. Despite the fact we know that the human body requires time to heal and adjust. It just hasn't kept up with the 24-hour-turnaround promise on offer.

Unfortunately, patients don't know any better. They are driven by the imagined fear of spending weeks or months with no functioning teeth. So they buy the marketing ploys and reject the implant. Conversely, the healing process is not always advertised to patients. They aren't capable, but because they don't have the comfort level to invert this immune mechanism — and put us squarely between their time-sensitive demands and their own long-term satisfaction.

Bioactive implant coating stimulates healing process

By DTI

TOMSK, Russia: One of the reasons for dental implant failure is rejection of the implant owing to the body’s immune response. Immune cells identify the implant as a foreign body and cause inflammation and fibrous rejection. A new bioactive coating for medical implants, developed by Russian scientists, may be able to invert this immune mechanism and encourage healing around the implant.

Scientists at Tomsk Polytechnic University have proposed solving the issue of implant rejection by coating implants with a biologically active compound that is an analogue to the cytokine interleukin-4. This substance combines with the behaviour of the innate immune cells, the macrophages, forcing them to stimulate the healing process instead of rejecting the implant.

“A feature of macrophages is their enormous plasticity under different conditions the same immune cells can either fight the implant or, conversely, stimulate the healing process. We are trying to synthesize these compounds, which could force macrophages to differentiate into a positive phenotype,” said project manager Ksenia Stankevich, a PhD student at the Department of Biotechnology and Organic Chemistry at the university’s Institute of High Technology Physics.

According to the researchers, the coating could be used for polymeric and titanium implants, which are employed in implant dentistry, as well as orthopaedic and oral surgery. Therefore, the Russian scientists hope that their development will be universally applicable in implantology. Currently, they are at the stage of synthesising the compound and are conducting experiments to determine its optimal composition.

The research project has received the support of the Russian Foundation for Basic Research and was a gold medal at the RuBioTech international exhibition in 2016, according to the university. ❄

The Risk to Our Reputations

Patients rely on us to help them expand their understanding of the full arch process, and especially of what is healthy. When we don’t reset expectations, explain the best way to achieve optimal results, and then deliver to those promises, patients have every right to be unhappy.

Unfortunately, practitioners don’t only pay with increased unprofitable chair time—their patients’ promises, and that can ultimately impact their reputations for years to come.

Today, dental services and other health care providers are ranked online along with car dealerships and dry cleaners. Negative word of mouth harms our reputations, but bad reviews and horror stories shared online can not only affect perceptions, but also search engine results— for all to see.

What Patients Really Want

When we first meet with patients—regardless of why they say they’ve come to the office—we should ask what their ultimate goals are. Their top answers shouldn’t surprise you: a natural look, the ability to eat all types of foods, and long-lasting implants that don’t require special care. Although we inevitably talk about treatment, not only do they bring hope and expert guidance. For us, it is important not to be pressured to make unrealistic promises based on manufacturers’ generalized marketing strategies. Instead, get smart about the implant protocol you want to specialize in—understand the entire process, well beyond the initial loading. Embrace all the continuing education available and seek out other practices that have had success.

Choose your implant protocols based on the resources made available to you. Until you have seen your first dozen patients through the process, having other experts available for advice and direction is invaluable.

With a depth of resources and experience at your disposal, you will be in a better place to make the ultimate promise to your patients: that you will see them through to the finish line, creating a healthy mouth and lasting smile that will match all their most important expectations. ■
Novel implant coating could facilitate bone integration

By DTI

LEIOA, Spain: Oral infections are regarded as the main reason that dental implants fail. Spanish researchers are currently developing antibacterial coatings that are capable of preventing and eliminating potential bacterial infections while providing the implants with osseointegration properties.

The quest for surfaces that are capable of preventing bacterial colonisation and adhesion in the areas surrounding the implant “is a subject of undoubted interest, borne out of the huge number of studies that have been undertaken in this field,” according to Beatriz Palla, researcher at the Biomaterials Group of the Department of Polymer Science and Technology at UPV/EHU, University of the Basque Country. “About 20 per cent of implants have to be removed due to osseointegration problems or because of the onset of infection,” she explained.

When designing strategies to combat these problems, the challenge is to give the surface of the titanium implant antibacterial properties, while simultaneously overcoming the tremendous resistance that bacterial strains are capable of developing against conventional antibiotics. “We have already created coatings that facilitate bone generation around the implant, thereby facilitating anchoring to the bone. In a bid to go a step further, we looked at how we could turn these coatings into bactericides,” said the Palla.

The Spanish researchers used sol-gel synthesis to tackle the problem. This process, which is done with the preparation of a precursor solution (sol), which, if it is left on its own for a while, turns into a gel that can be used to coat the surface of the titanium screw. After heat treatment at a high temperature in the kiln, it adheres to the screw that will be implanted. “We used titanium as the substrate, because, in many studies this compound has shown to be osteoinductive, so it meets one of the objectives that we wanted to achieve. What’s more, in order to provide the materials with antibacterial characteristics, we added various antibacterial agents”,

In a related study, Palla developed three types of coatings using various antibacterial agents. Each of the coatings are able to tackle bacterial infections, either prophylactically by preventing the bacteria from adhering initially or against subsequent infection by eliminating it as soon as it develops.

One of the requirements of the prophylactic coating was to create “a material with a very long degradation time so that it would adhere to the screw and work for as long as possible, while preventing bacteria from adhering,” said Palla. In the coatings that were designed to eradicate an infection that has already taken hold, however, “a rapidly degrading material is needed so that it can release the antibacterial agent as quickly as possible to attack the infection”. Furthermore, one of the coatings that were developed for this purpose “is designed to be used in situ, at the dentist’s surgery itself, on the infected screw without any need to extract the implant from the patient. This new material is in the process of being patented and remains a trade secret,” the researcher stated.

In view of the results, Palla believes that “it is possible to confirm that coatings with antibacterial capabilities, which do not affect the proper integration of the implant into the jawbone, have been developed”. However, she also admits that there is still a long way to go until these can be applied and used at dental surgeries. She explains that “apart from all the trials that remain to be carried out, it would also be advisable to further pursue the research a little in order to optimise the results”.

The study, titled “Control of the degradation of silica sol-gel hybrid coatings for metal implants prepared by the triple combination of alkoxysilanes”, was published in the December 2016 issue of the Journal of Non-Crystalline Solids.